Derivation of a Poroelastic Flexural Shell Model
نویسندگان
چکیده
In this paper we investigate the limit behavior of the solution to quasi-static Biot’s equations in thin poroelastic flexural shells as the thickness of the shell tends to zero and extend the results obtained for the poroelastic plate by Marciniak-Czochra and Mikelić in [16]. We choose Terzaghi’s time corresponding to the shell thickness and obtain the strong convergence of the three-dimensional solid displacement, fluid pressure and total poroelastic stress to the solution of the new class of shell equations. The derived bending equation is coupled with the pressure equation and it contains the bending moment due to the variation in pore pressure across the shell thickness. The effective pressure equation is parabolic only in the normal direction. As additional terms it contains the time derivative of the middle-surface flexural strain. Derivation of the model presents an extension of the results on the derivation of classical linear elastic shells by Ciarlet and collaborators to the poroelastic shells case. The new technical points include determination of the 2×2 strain matrix, independent of the vertical direction, in the limit of the rescaled strains and identification of the pressure equation. This term is not necessary to be determined in order to derive the classical flexural shell model.
منابع مشابه
Study of Torsional Vibrations of Composite Poroelastic Spherical Shell-Biot’s Extension Theory
Torsional vibrations of composite poroelastic dissipative spherical shell are investigated in the framework of Biot’s extension theory.Here composite poroelastic spherical shell consists of two spherical shells, one is placed on other, and both are made of different poroelastic materials. Consideration of the stress-free boundaries of outer surface and the perfect bonding between two shells lea...
متن کاملVibration Analysis of an Infinite Poroelastic Circular Cylindrical Shell Immersed in Fluid
The purpose of this paper is to study the effect of presence of fluid within and around a poroelastic circular cylindrical shell of infinite extent on axially symmetric vibrations. The frequency equation each for a pervious and an impervious surface is obtained employing Biot’s theory. Radial vibrations and axially symmetric shear vibrations are uncoupled when the wavenumber is vanished. The pr...
متن کاملA poroelastic model of the lung
This work is motivated by the modelling of ventilation and deformation in the lung for understanding the biomechanics of respiratory diseases. The main contribution is the derivation and implementation of a lung model that tightly couples a poroelastic model of lung parenchyma to an airway fluid network. The poroelastic model approximates the porous structure of lung parenchyma using a continuu...
متن کاملFirst Principles Derivation of Displacement and Stress Function for Three-Dimensional Elastostatic Problems, and Application to the Flexural Analysis of Thick Circular Plates
In this study, stress and displacement functions of the three-dimensional theory of elasticity for homogeneous isotropic bodies are derived from first principles from the differential equations of equilibrium, the generalized stress – strain laws and the geometric relations of strain and displacement. It is found that the stress and displacement functions must be biharmonic functions. The deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 14 شماره
صفحات -
تاریخ انتشار 2016